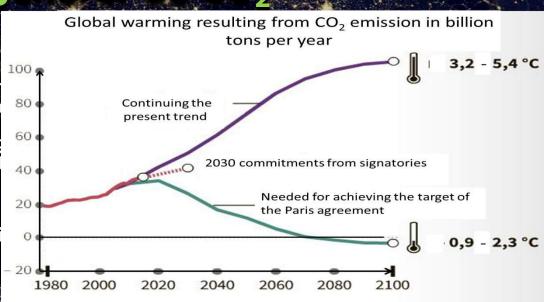


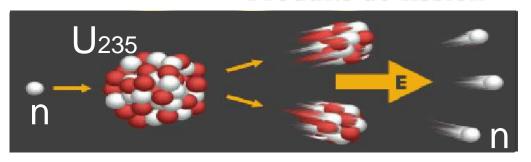
Le défi de l'énergie


La consommation mondiale d'énergie doit croître de 60% d'ici 2030. (International Energy Agency - IEA)

La part de l'électricité en constante augmentation

Produire massivement de l'énergie sans générer de CO₂

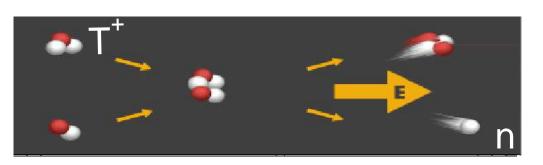
Les options pour le futur:


- Combustibles fossiles: épuisement ir qui reste à définir; développer la cap
- Renouvelables: développer leur usag technologiques dans la production et
- Fission nucléaire: enjeu de sûreté et
- Fusion: doit apporter la démonstrati technique

Fission / Fusion

Produits de fission

Fission
Combustible:
Uranium
solide



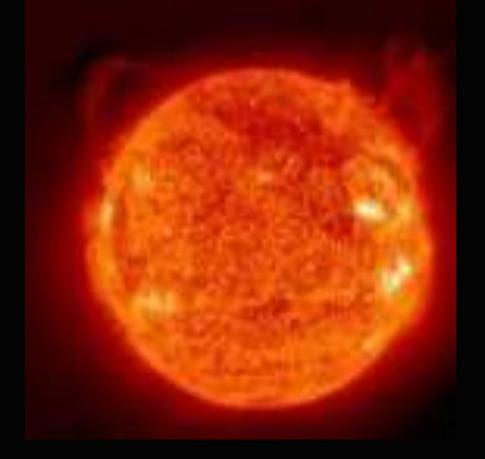
Neutrons

réactions en chaîne

Fusion
Combustible:
hydrogène
gaz

Hélium

maintient la température du gaz



Combustible de la fusion: deutérium et tritium

Deutérium: se trouve dans les océans

Tritium: fabriqué in situ à partir du Lithium

→ Confiner un gaz porté à 100 millions de degrés

Hans Bethe CNO 1938

L'énergie de fusion: source d'énergie du soleil depuis 5 milliards d'année Peut-on la reproduire sur terre de façon contrôlée?

Fusion: énergie concentrée et propre

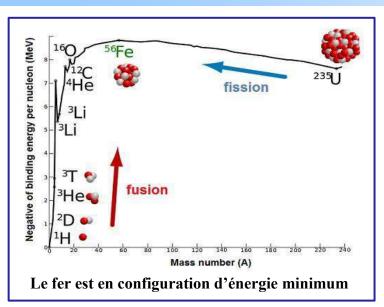
Un gramme de D/T= 8 tonnes de pétrole!

Réserve illimitée!

Pas de CO2

Pas de déchets de haute activité à vie longue

Pas de possibilité d'emballement

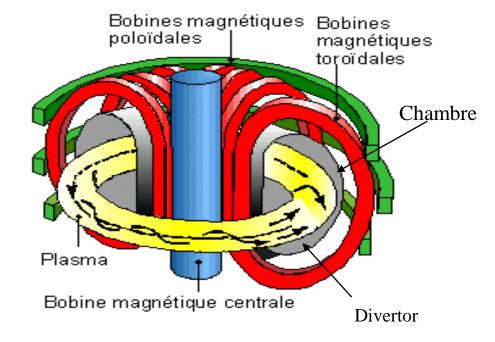

Pas de prolifération

Mais:

Science compliquée: plasma chaud, matériaux, supraconducteurs

→ le risque scientifique en vaut la peine!

Principes de base de la fusion

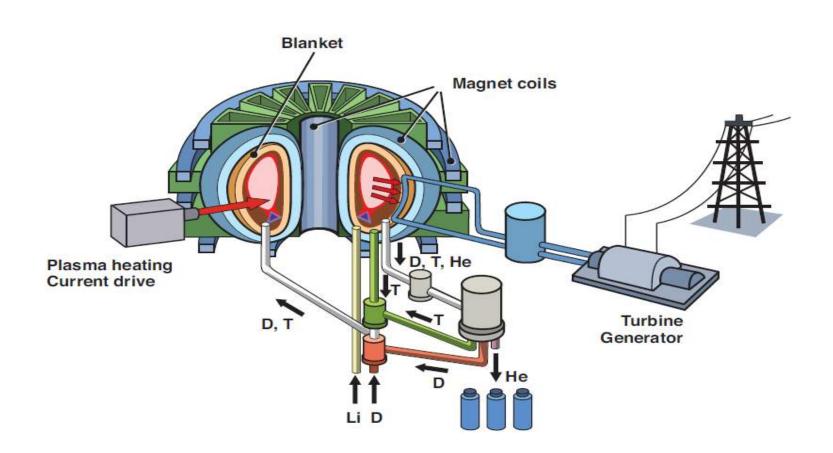

$$\begin{split} &\textbf{Ignition si } P_f > P_{perte} \\ &P_f = E_f.n_D.n_T. < \sigma v > \; ; \; P_{perte} = W/\tau_E \; ; \; W = 3.n_D.n_T.k.T \end{split}$$
 Ce qui donne: $\textbf{nT}\tau_E > \textbf{10}^{21} \; \textbf{m}^{-3}.\textbf{keV.s} \sim \textbf{1 bar.s}$

$$^{2}D^{+} + ^{2}D^{+}$$
 $^{50\%}$
 $^{3}He^{++} (0.8MeV) + n^{0} (2.5MeV)$
 $^{2}D^{+} + ^{3}T^{+}$
 $^{4}He^{++} (3.5MeV) + n^{0} (14MeV)$
 $^{2}D^{+} + ^{3}He^{++}$
 $^{4}He^{++} (3.6MeV) + p^{+} (15MeV)$

La réaction deutérium/tritium est la plus facile

Confiner un gaz à 100 millions de degrés: le Tokamak

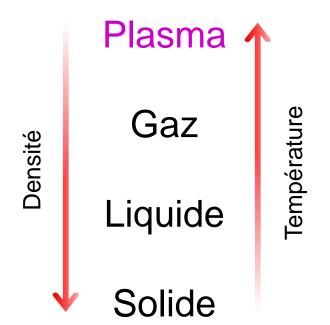
- Création du "plasma" et chauffage
 - → Allumage
- Le plasma est guidé autour du tore par le champ magnétique
 - → Confinement du plasma
- L'hélium né de la fusion D/T entretient la température
 - **→** Combustion


Gain d'énergie si: $nT\tau_E \sim 10^{21} \text{ m}^{-3}$.keV.s ~ 1 bar.s

- n (densité) = 10^{20} p/m³ \rightarrow facile! (3.10²⁵ dans l'atmosphère)
- T (température) \geq 10 keV → démontrée
- $\tau_{\rm E}$ (temps de confinement de l'énergie) $\geq 4~{\rm s}$ \Rightarrow taille critique

Quelle taille faut-il pour un bon rendement?

ITER


Réacteur à Fusion sur la planète Terre

Certains l'aiment chaud...

Plasmas:

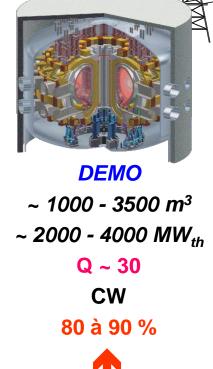
4ème état de la matière
Interactions collectives

Plasma de JET

Etapes et enjeux scientifiques

Depuis 1970: progrès ~ 10000 sur n.T. τ_E et sur la durée des décharges

Gagner encore un facteur 3 à 5 → ITER et Démo + développer les matériaux en parallèle



Développement sur 3 plans

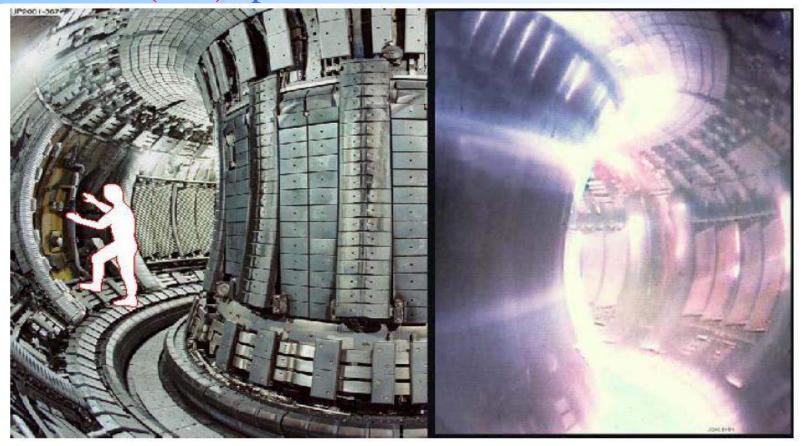
• Français: environ 60 équipes dont Tore Supra (West)

• **Européen:** Le **JET** + programmes des pays membres (Associations/Consortium)

• Mondial: ITER + 'broader approach' + collaboration via AIEA et IEA avec labos US, Japon, Russie, Chine, Corée, Inde etc.

Tore Supra / WEST

(CEA Cadarache + collaborations)



Supra conducteurs, composants face au plasma

→ longs pulses. Record d'énergie extraite

JET (UE): performance & dimensionnement

Sans plasma

Avec plasma → T requise , 16 MW etc...

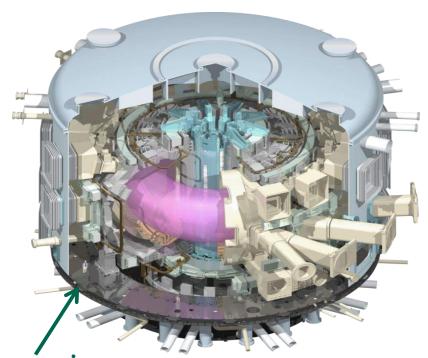
ITER: une longue maturation...

1988 - 2003:

Conception par une équipe internationale (EU, US, FR, Japon) → 500MW; Q=10

2003 - 2005:

- Compétition pour le choix du site entre Japon, Canada, France et Espagne
 - → gagnée par l'Europe qui choisit


Cadarache

2007:

- Création de ITER organisation internationale à Cadarache

2015:

- Restructuration de l'organisation internationale
 - → nouveau DG (l'AG du CEA!)
- Accélération de la construction
 - → Arrivée des premiers composants XXL d'ITER de Fos sur Mer à Cadarache

Homo sapiens

Une forte implication des collectivités territoriales

En 2002, les collectivités territoriales de la région PACA se sont engagées à soutenir financièrement le programme ITER.

Au total, elles apportent 467 millions d'euros au programme ITER:

Région Paca: 152 M€

• Bouches-du-Rhône: 152 M€

Com. Pays d'Aix: 75 M€

• Var: 30 M€

Vaucluse: 28 M€

Alpes-Maritimes: 15 M€

Alpes-de-Haute-Provence: 10 M€

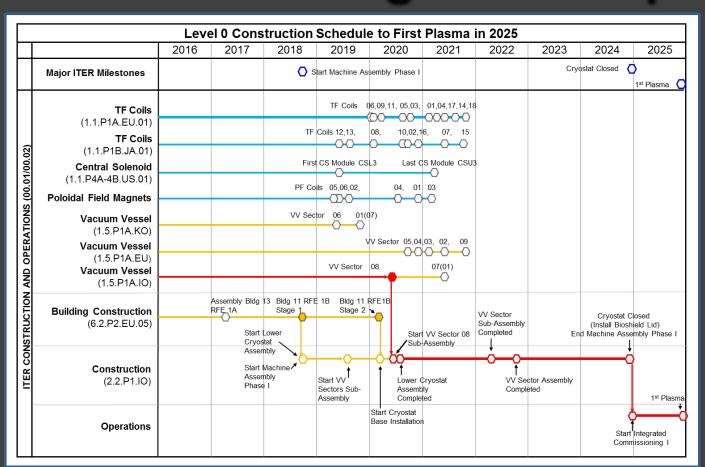
Hautes-Alpes: 5 M€

Un bon plan!!:

Total des contrats passés depuis 2007 : 5,5 milliards d'euros

Part des entreprises françaises : 3,1 milliards d'euros (56%)

Impact du CEA dans ITER



Directeurs d'ITER, phase EDA Left: P-H Rebut 1991 – 1994 Right: R. Aymar 1994 - 2001

Bernard Bigot, DG d'ITER depuis le 6 Mars 2015 Dessin de *Nature*, Juin 2015

Assemblage: les étapes-clé

Novembre 2017: à mi-chemir du 1^{er} plasma

2018:Début assemblage machine, (base du cryostat)

2019: Sous-assemblage chambre à vide

2022: Fin de l'assemblage des secteurs

2024: Fermeture du cryostat

2025: Tests intégrés

Fin 2025: 1er plasma

2035; Pleine puissance

Solénoïde central (6)

Alimentation (31)

Bobines de champ toroidal (18)

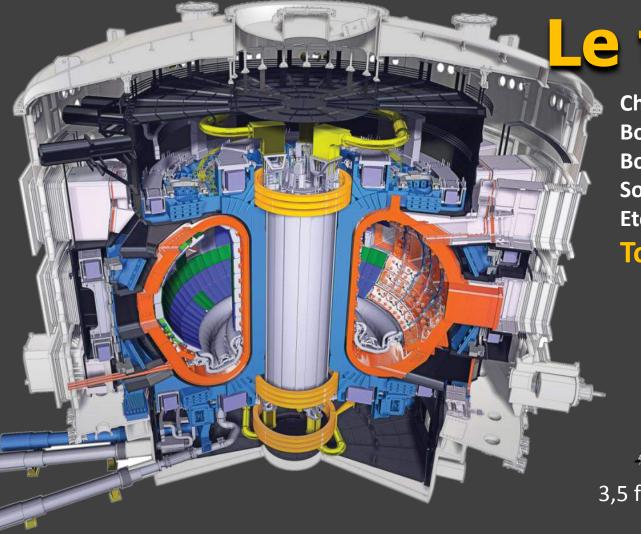
Bobines de champ poloïdal (6)

Bobines de correction 💽

Bouclier thermique

Chambre à vide



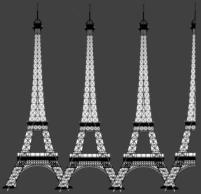

Complexe Tokamak

L'enceinte de protection biologique (bioshield) au cœur de laquelle la machine sera assemblée est aujourd'hui finalisée.

Sous la plate-forme de protection (« lid »), désormais positionnée au niveau L4 du bâtiment, la construction de la « couronne » progresse.

<u>e tokamak</u>

Chambre à vide: ~ 8 000 t.


Bobines TF: 18 x 360 t.

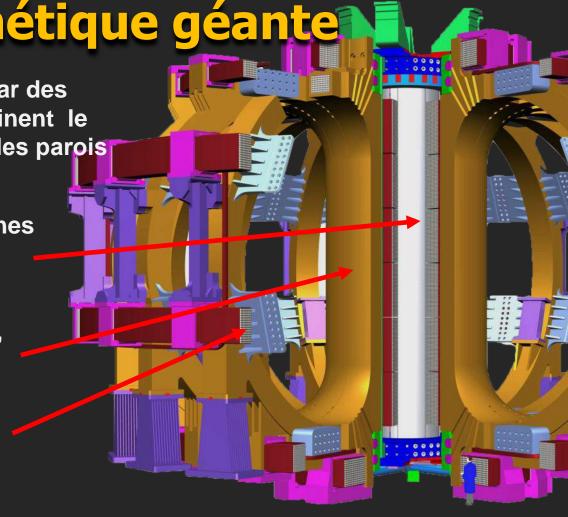
Bobines PF: 6 de ~ 200 à ~400 t.

Solénoïde central: ~ 1 000 t.

Etc.

Total ~ 23 000 t.

3,5 fois la masse de la Tour Eiffel!


Une cage magnétique géante

Le champ magnétique produit par des aimants supraconducteurs confinent le plasma et le maintient à l'écart des parois de la chambre à vide.

1 solénoïde central, 1 000 tonnes 18 m. de haut, 300 000 fois le champ magnétique terrestre

18 bobines de champ toroïdal, 17 m. de haut, 360 tonnes chacune

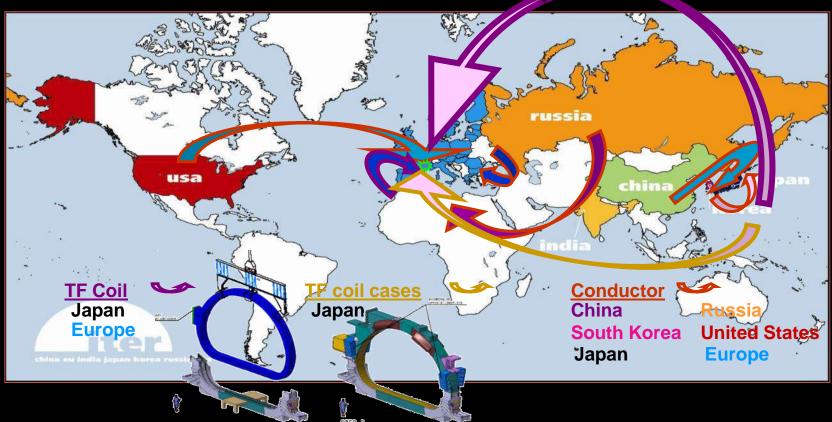
6 bobines de champ poloïdal de 8 à 24 mètres de diamètre

Les plus grandes bobines du système magnétique ('PF Coils', diamètre 8 à 24 m) sont fabriquées par l'Europe dans ce bâtiment de 12 000 mètres carrés. La fabrication de la première maquette (17 m) est quasiment finalisée.


A Toulon (CNIM) et à Camerana, en Italie (SIMIC), on usine les prototypes à échelle 1:1 des structures de support destinées aux bobines de champ toroïdal (TF Coils) du tokamak.

Europe

En Italie, la fabrication de la première des 10 bobines de champ toroïdal (sur 18) que doit livrer l'Europe est en cours. Une fois finalisée, la bobine sera insérée dans une « cassette » d'acier – l'ensemble pèsera plus de 310 tonnes, le poids d'un Boeing 747 à pleine charge.


Japon

Traitement à haute température des bobinages des aimants de champ toroidal à l'usine Mitsubishi de Futami (Japon).

...à l'échelle de la planète...

(Exemple: les bobines de champ toroïdal)

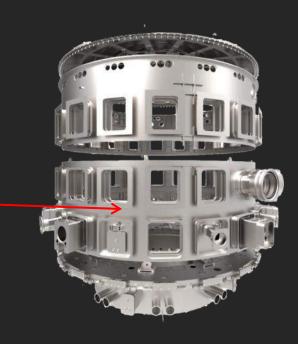
USA

La fabrication du solénoïde central du Tokamak ITER est en cours chez General Atomics en Californie. Cet élément, d'une masse de 1 000 tonnes, est l'un des aimants les plus puissants jamais construits.

Les Etats-Unis ont livré les quatre transformateurs destinés au réseau électrique de l'installation.

Corée

Opérations de soudage d'une section de la chambre à vide dans les ateliers de Hyundai Heavy Industries à Ulsan (Corée).


Inde

La base du cryostat a été provisoirement assemblée dans l'usine Larsen & Toubro Ltd en Inde. Les premiers éléments ont été livrés à ITER les 10 et 17 décembre 2015.

Atelier du Cryostat

Fabriqué en Inde, le cryostat (enceinte à vide de 30 m x 30 m qui contient l'ensemble de la machine pour la maintenir en Sifroid) est en cours d'assemblage sur le site.

Assemblage: début en 2018

Ces outils géants, fournis par la Corée, vont manipuler des charges qui, une fois préassemblées, pourront peser jusqu'à 1 500 tonnes.

Un pôle scientifique mondial en France

- Sur ITER à Cadarache: ~ 2000 personnes déjà sur place et > 1000 scientifiques pendant l'exploitation
- Associés à ITER:
 - Universités, CEA, INRIA: Fédération de recherche labos renforcées ~
 40 labos, 60 équipes et ~ 200 scientifiques
 - « WEST » (modification de TS) plateforme pour préparer
 l'exploitation d'ITER (diverteur en W, fonctionnement continu)
 - De par le monde: 7 agences domestiques (une par partenaire); plusieurs milliers de collaborateurs scientifiques
 - Formation: master: 'sciences de la fusion', 'Erasmus Mundus'

